Search results for "Phosphoglycerate dehydrogenase"

showing 4 items of 4 documents

PGDH family genes differentially affect Arabidopsis tolerance to salt stress

2019

The first step in the Phosphorylated Pathway of serine (Ser) Biosynthesis (PPSB) is catalyzed by the enzyme Phosphoglycerate Dehydrogenase (PGDH), coded in Arabidopsis thaliana by three genes. Gene expression analysis indicated that PGDH1 and PGDH2 were induced, while PGDH3 was repressed, by salt-stress. Accordingly, PGDH3 overexpressing plants (Oex PGDH3) were more sensitive to salinity than wild type plants (WT), while plants overexpressing PGDH1 (Oex PGDH1) performed better than WT under salinity conditions. Oex PGDH1 lines displayed lower levels of the salt-stress markers proline and raffinose in roots than WT under salt-stress conditions. Besides, the ratio of oxidized glutathione (GSS…

0106 biological sciences0301 basic medicineArabidopsisPlant SciencePlant Roots01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundBiosynthesisGene Expression Regulation PlantArabidopsisGene expressionGeneticsArabidopsis thalianaPhosphoglycerate dehydrogenaseProlinePhosphoglycerate DehydrogenasebiologyArabidopsis ProteinsWild typeSalt ToleranceGeneral Medicinebiology.organism_classification030104 developmental biologychemistryBiochemistryMultigene FamilyAgronomy and Crop Science010606 plant biology & botanyPlant Science
researchProduct

Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development.

2021

[EN] Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Ph…

0106 biological sciences0301 basic medicineMutantArabidopsisPlant ScienceGenes Plant01 natural sciencesGene Expression Regulation EnzymologicSerine03 medical and health scienceschemistry.chemical_compoundSulfur assimilationBiosynthesisGene Expression Regulation PlantArabidopsisGeneticsSerinePhosphoglycerate dehydrogenaseGenePhosphoglycerate DehydrogenasePSPbiologyGeneral MedicinePhosphorylated pathway of serine biosynthesisbiology.organism_classificationBiosynthetic Pathways030104 developmental biologyPGDHBiochemistrychemistryEssential geneFISIOLOGIA VEGETALPhosphoserine phosphataseAgronomy and Crop Science010606 plant biology & botanyPlant science : an international journal of experimental plant biology
researchProduct

Identification of the phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in Arabidopsis

2013

[EN] Three different pathways of serine (Ser) biosynthesis have been described in plants: the Glycolate pathway, which is part of the Photorespiratory pathway, and 2 non-Photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Ser Biosynthesis (PPSB) has been known to exist since the 1950s, but its biological relevance was not revealed until quite recently when the last enzyme of the pathway, the Phosphoserine Phosphatase, was functionally characterized. In the associated study1, we characterized a family of genes coding for putatite phosphoglycerate dehydrogenases (PGDH, 3-PGDH, and EDA9), the first enzyme of the PPSB. A metabolomics study usi…

Male gametophyteShort CommunicationArabidopsisPlant ScienceBiologyEmbryo developmentGenes PlantGene Expression Regulation EnzymologicSerinechemistry.chemical_compoundBiosynthesisGene Expression Regulation PlantArabidopsisBIOQUIMICA Y BIOLOGIA MOLECULARSerinePhosphoglycerate dehydrogenasePhosphorylationGenePhosphoglycerate DehydrogenasePhosphoglycerate dehydrogenasePhosphoglycerate kinaseGenes EssentialArabidopsis ProteinsPhosphoserine phosphatasePhosphorylated pathway of serine biosynthesisbiology.organism_classificationBiosynthetic PathwaysIsoenzymeschemistryBiochemistryEssential geneSeedsPollen
researchProduct

Functional characterization of the plastidial 3-phosphoglycerate dehydrogenase family in Arabidopsis.

2013

This work contributes to unraveling the role of the phosphorylated pathway of serine (Ser) biosynthesis in Arabidopsis (Arabidopsis thaliana) by functionally characterizing genes coding for the first enzyme of this pathway, 3-phosphoglycerate dehydrogenase (PGDH). We identified two Arabidopsis plastid-localized PGDH genes (3-PGDH and EMBRYO SAC DEVELOPMENT ARREST9 [EDA9]) with a high percentage of amino acid identity with a previously identified PGDH. All three genes displayed a different expression pattern indicating that they are not functionally redundant. pgdh and 3-pgdh mutants presented no drastic visual phenotypes, but eda9 displayed delayed embryo development, leading to aborted emb…

PhysiologyMutantMolecular Sequence DataArabidopsisPlant SciencePlant RootsGene Expression Regulation EnzymologicSerineBiochemistry and MetabolismGene Expression Regulation PlantComplementary DNAArabidopsisGeneticsSerineArabidopsis thalianaMetabolomicsAmino Acid SequencePlastidsPhosphorylationGenePhosphoglycerate DehydrogenasePhylogenyTapetumMicroscopy ConfocalbiologySequence Homology Amino AcidArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionGenetic Complementation Testfood and beveragesPlant Components Aerialbiology.organism_classificationPlants Genetically ModifiedPhenotypeIsoenzymesBiochemistryMultigene FamilyMutationSeedsPollenPlant physiology
researchProduct